Discovering New Light States with Neutrino Experiments

Roni Harnik, Fermilab

work with R. Essig, J. Kaplan, N. Toro Phys. Rev. D 82 (2010) or arxiv:1008.636

Where is New Physics?

couplings to SM

In this talk I would like to advertise: Neutrino experiments can look there— already with existing data.

mass

Outline

* Models

- Axions
- Dark photons
- * Axion limits from neutrino experiments:
 - from **protons** hitting target.
 - from muons hitting rock.
- * Axion reach for μ fixed-target experiments.
- * Conclusions and thoughts.

Models

Axions

- * A pseudo-Nambu-Goldsotne boson (PNGB) is naturally light. Couples to matter with derivatives.
- * Using e.o.m. one gets:

$$\mathcal{L}_a = \frac{m_\psi}{F} a \bar{\psi} \gamma_5 \psi$$

- * Note: PNGBs couple to mass (more later).
- * Arise as R-axions, axions, in the NMSSM, etc.

Dark Photons

- * Consider a dark sector that has a "photon" with a mas of MeV GeV.
- * We can write a kinetic mixing

$$\delta \mathcal{L} = \frac{\epsilon_Y}{2} F'_{\mu\nu} F^{\mu\nu}_Y \quad \Longrightarrow \quad \delta \mathcal{L} = \epsilon e A'_{\mu} \bar{\psi} \gamma^{\mu} \psi$$

* The mixing parameter, ϵ , can be naturally small.

etc...

- * There are many more possibilities:
 - Dark photon + dark higgs
 - Hidden valley models.
 - Light B-L gauge.
 - o $L_{\mu}-L_{ au}$ gauge bosons.
 - 0

Hints of light states?

- * PAMELA provided a "hint" of dark matter annihilation with:
 - a rate that's too high.
 - Annihilation only to leptons.

 $m_{\phi} \sim \text{GeV}$

- * A new light state coupling to dark matter helps with both:
 - Sommerfed enhancement.
 - Annihilation to light state, goes to leptons if its below a couple of GeV.

see Joachim's talk for MINOS motivation for light states.

Limits on Axions

(a.k.a. PNGB's)

Axion - Production

* "a-sstrahlung":

rule of thumb - for every bremsstrahlung photon there is a small probability, m_ψ^2/F^2 , to emit an axion instead.

* Mixing with a pion:

Every produced pion can be an axion instead, with a some small probability $\sim f_\pi^2/F^2$.

$$\pi^0 \xrightarrow{a}$$

Decay

Decay lengths can be either long (>100m) or short (prompt).

Axion - existing limits

* Limits on axions come from flavor, g-2, SN 1987a, and from CHARM (beam dump at CERN).

Note: 9-2 is negative.

But could turn positive at 2-loops if it couples to tau.

* Every neutrino beam starts with protons striking a target:

* Every neutrino beam starts with protons striking a target:

Minerva MINOS

* Every neutrino beam starts with protons striking a target:

Minerva MINOS

* Every neutrino beam starts with protons striking a target:

Minerva MINOS

Signal:

- * lepton (or photon) pair originating from a single point in air.
- * Reconstruct a mass peak.

MINOS & Minerva are complementary!

- * Gap b/w CHARM and SN partially closes.
- * LSND dominates thanks to number of protons on target.
- * Future facilities can close the gap?

- * Gap b/w CHARM and SN partially closes.
- * LSND dominates thanks to number of protons on target.
- * Future facilities can close the gap?

- * Gap b/w CHARM and SN partially closes.
- * LSND dominates thanks to number of protons on target.
- * Future facilities can close the gap?

Dark Photon Limits

- * Limits may be drawn in dark photon parameter space.
- * Different production mechanisms (meson decays).
- * LSND competes well.

Muon Beam Dumps

- * Neutrino beams are also muon beam dumps.
- * NuMI is also the worlds most intense muon beam!

- * Muons have advantages:
 - Axion couple to mass.
 - Muon g-2 anomaly...?

- * MIMOS/Minerva do well (compare to E137).
- Naive Project-X
 projection
 (N_{mu}=MINOS x 10) is
 obviously better!

- * MIMOS/Minerva do well (compare to E137).
- Naive Project-X
 projection
 (N_{mu}=MINOS x 10) is
 obviously better!

Need to get closer to the target...

Muon Fixed-Target

Muon Fixed Target

- * We have the world's most intense muon beam! What else can we do with it?
- * It is tempting to consider fixed target setups (muons passing through a target with a very near detector).
- * Muons have advantages:
 - Muons can pass through a thick target (several radiation lengths) without leaving a big mess!
 - Muon g-2.
 - Enhanced sensitivity to PNGBs.

COMPASS

* A muon fixed target experiment exists at CERN.

COMPASS

- * A muon fixed target experiment exists at CERN.
- * 160 GeV muon beam. Collected ~10¹⁵ muons on a Lithium target (about 1.3 meters long).
- * Two possible searches:
 - Displaced decay: look for a muon pair coming from a common point outside the target.
 - Bump hunt: look for an invariant mass peak over the SM continuum background.
- * Can be improved with high-Z target.

COMPASS

- * COMPASS can cover interesting parameter space that's motivated by g-2.
- * Further investigation needed for higher mass (form factor comes in).

Theorists can dream...

- * Can we have a neutrino beam and a muon fixed target on the same beam-line?
- * Can we focus NuMI muons before they hit the muon monitor?
- * Could we instrument the Muon monitor area in NuMI to search for new particles?

$$\theta_a \lesssim \max\left(\frac{m_a}{E_0}, \frac{m_\mu}{E_0}\right)$$

Conclusion

- * New particles can hide at **low mass** while having **feeble couplings**.
- * Such NP may be probed at the **intensity** frontier.
- LSND places strong axion limits.
- * MINOS/Minerva can get impressive limits on lepto-philic axions w/ intense muon "beam".
- * COMPASS can cover regions interesting for g-2.
- * Future facilities? Beam dumps? Muon Fixed target?

extras

"a-sstrahlung"

* Production cross section:

$$\sigma \approx \frac{m_{\mu}^2}{F^2} \frac{2\alpha^2}{\max(m_{\mu}^2, m_a^2)}$$

* Axion is typically produced forward with most of the beam energy:

$$\theta_a \lesssim \max\left(\frac{m_a}{E_0}, \frac{m_\mu}{E_0}\right)$$

* For more details see: arXiv: 1008.0636

$$\gamma c \tau \simeq \frac{3}{N_{\rm eff} m_{A'} \alpha \epsilon^2} \simeq \frac{0.8 {\rm cm}}{N_{\rm eff}} \left(\frac{E_0}{10 {\rm GeV}}\right) \left(\frac{10^{-4}}{\epsilon}\right)^2 \left(\frac{100 \, {\rm MeV}}{m_{A'}}\right)^2$$